Experimental Evaluation of FLIR ATR Approaches - A Comparative Study

نویسندگان

  • Baoxin Li
  • Rama Chellappa
  • Qinfen Zheng
  • Sandor Z. Der
  • Nasser M. Nasrabadi
  • LipChen Alex Chan
  • Lin-Cheng Wang
چکیده

This paper presents an empirical evaluation of a number of recently developed Automatic Target Recognition algorithms for Forward-Looking Infrared (FLIR) imagery using a large database of real FLIR images. The algorithms evaluated are based on convolutional neural networks (CNN), principal component analysis (PCA), linear discriminant analysis (LDA), learning vector quantization (LVQ), modular neural networks (MNN), and two model-based algorithms, using Hausdorff metric-based matching and geometric hashing. The evaluation results show that among the neural approaches, the LVQand MNN-based algorithms perform the best; the classical LDA and the PCA methods and our implementation of the geometric hashing method ended up in the bottom three, with the CNNand Hausdorff metric-based methods in the middle. Analyses show that the less-than-desirable performance of the approaches is mainly due to the lack of a good training set. c © 2001 Elsevier Science (USA)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust automatic target detection/recognition system for second generation FLIR imagery

Automatic target detection and recognition (ATD/R) is of crucial interest to the defense community. We present a robust ATD/R system developed at the CVRC at UT-Austin for recognition in second generation forward looking infrared (FLIR) images. An experiment conducted on 1,930 FLIR images shows that this ATR system can achieve recognition with a high degree of accuracy and a low false alarm rat...

متن کامل

Simulation of FLIR and LADAR Data Using Graphics Animation Software

This paper presents an implementation of Forward Looking Infrared (FLIR) and Laser Radar (LADAR) data simulation for use in developing a multi-sensor datafusion automated target recognition (ATR) system. Through the use of commercial models and software we can create a highly detailed scene model, which provides a rich data set for later processing. We embed our own modules within this software...

متن کامل

Detrimental Effect of Atrazine on Testicular Tissue and Sperm Quality: Implication for Oxidative Stress and Hormonal Alterations

Background: Atrazine (ATR) is used as an agriculture herbicide worldwide. It has been shown that ATR adversely affect the reproductive system in rodents. In this study we aimed to evaluate the impact of chronic exposure to Atrazine (ATR) on male testicular tissue, sperm parameters, serum level of total thiol molecules (TTM) and malodialdehyde (MDA) content of testes. Methods: To follow-up th...

متن کامل

Guest Editorial Introduction To The Special Issue On Automatic Target Detection And Recognition

AUTOMATIC target recognition (ATR) generally refers to the autonomous or aided target detection and recognition by computer processing of data from a variety of sensors such as forward looking infrared (FLIR), synthetic aperture radar (SAR), inverse synthetic aperture radar (ISAR), laser radar (LADAR), millimeter wave (MMW) radar, multispectral/hyperspectral sensors, low-light television (LLTV)...

متن کامل

Simulation of LADAR and FLIR data. Second quarter report

Even though the technology has improved and become cheaper the actual acquisition can be expensive due to the very nature of ATR scenarios leading to a lack of readily available data. The need for an easier method of obtaining data for use in testing ATR systems is evident and the obvious way forward is to design software that mimics the sensors to give an accurate simulation of real data. This...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Vision and Image Understanding

دوره 84  شماره 

صفحات  -

تاریخ انتشار 2001